quinta-feira, 26 de setembro de 2013

Cap 1. Tratado de fisiologia Guyton.

A fisiologia tenta explicar os fatores físicos e químicos responsáveis pela origem, desenvolvimento e progressão da vida. Cada tipo de vida, desde o mais simples vírus até a maior árvore ou o complexo ser humano, possui características funcionais próprias. Portanto, o vasto campo da fisiologia pode ser dividido cm fisiologia virai, fisiologia bacteriana, fisiologia celular, fisiologia vegetal, fisiologia humana, e em muitas outras áreas.

Fisiologia humana. Na fisiologia humana, estamos interessados nas características e mecanismos específicos do corpo humano que o tornam um ser vivo. O simples fato de que permanecemos vivos está quase além de nosso controle, pois a fome nos faz procurar alimento e o medo, a buscar abrigo. As sensações de frio nos levam a produzir calor e outras forças nos levam a procurar companhia e a reproduzir. Assim, o ser humano é, na verdade, um autômato, e o fato de sermos seres que sentem, que têm sentimentos e conhecimento c parte dessa seqüência automática da vida; esses atributos especiais nos permitem viver sob condições extremamente variáveis que, de outra forma, impossibilitariam a vida

AS CÉLULAS COMO AS UNIDADES VIVAS DO CORPO

A unidade viva fundamental do corpo é a célula e cada órgão é um agregado de muitas células diferentes, mantidas unidas por estruturas intercelulares de sustentação. Cada tipo de célula é especialmente adaptado para a execução de uma função determinada. Por exemplo, os glóbulos vermelhos do sangue, um total de 25 trilhões de células, transportam oxigênio dos pulmões para os tecidos. Embora esse tipo de célula talvez seja o mais abundante, é possível que existam outros 75 trilhões de células. Todo o corpo é formado, então, por cerca de 100 trilhões de células.

Embora as inúmeras células do corpo possam, muitas vezes, diferir acentuadamente entre si, todas apresentam determinadas características básicas que são idênticas. Por exemplo, em todas as células, o oxigênio reage com carboidratos, gordura ou proteína para liberar a energia necessária ao funcionamento celular. Ainda mais, os mecanismos gerais para a transformação dos nutrientes em energia são, em termos básicos, os mesmos em todas as células e, igualmente, todas as células eliminam os produtos finais de suas reações químicas para os líquidos onde ficam imersas.

Quase todas as células também têm capacidade de se reproduzir e, sempre que células de determinado tipo são destruídas por qualquer causa, as células remanescentes do mesmo tipo regeneram, com muita freqüência, novas células até que seja restabelecido seu número adequado.

O LÍQUIDO EXTRACELULAR - O MEIO INTERNO

Cerca de 56% do corpo humano são compostos de líquidos. Embora a maior parte desse líquido fique no interior das células — e seja chamado de liquido intracelular —, cerca de um terço ocupa os espaços por fora das células e é chamado de liquido extracelular. O líquido extracelular se movimenta continuamente por todo o corpo. É transportado rapidamente no sangue circulante e, em seguida, misturado entre o sangue e os líquidos teciduais por difusão através das paredes capilares. No líquido extra-celular ficam os íons c os nutrientes necessários às células, para manutenção da vida celular. Por conseguinte, todas as células partilham de um mesmo ambiente, o líquido extracelular, razão por que esse líquido extracelular é chamado de meio interno do corpo, ou milieu intérieur, expressão criada, há pouco mais de 100 anos, pelo grande fisiologista francês do século XIX, Claude Bernard.

As células são capazes de viver, crescer e desempenhar suas funções específicas enquanto estiverem disponíveis, nesse ambiente interno, as concentrações adequadas de oxigênio, glicose, diversos íons, aminoácidos, substâncias gordurosas e outros constituintes.

Diferenças entre os líquidos extra e intracelulares. O líquido extracelular contém grandes quantidades de íons sódio, cloreto e bicarbonato, mais os nutrientes para as células, tais como oxigênio, glicose, ácidos graxos c aminoácidos. Também contém dióxido de carbono que está sendo transportado das células até os pulmões para serem excretados, além de outros produtos celulares que, igualmente, estão sendo transportados para o rim, onde vão ser excretados.

O líquido intracelular difere, de forma significativa, do líquido extracelular; em especial, contém grandes quantidades de íons potássio, magnésio e fosfato, em lugar dos íons sódio e cloreto presentes no líquido extracelular. Essas diferenças são mantidas por mecanismos especiais de transporte de íons através das membranas celulares. Esses mecanismos são discutidos no
Cap. 4.

MECANISMOS "HOMEOSTÁTICOS" DOS PRINCIPAIS SISTEMAS FUNCIONAIS HOMEOSTASIA

A palavra homeostasia é usada pelos fisiologistas para significar manutenção das condições constantes, ou estáticas, do meio interno. Em essência, todos os órgãos e tecidos do corpo exercem funções que ajudam a manter essas condições constantes. Por exemplo, os pulmões fornecem oxigênio para o líquido extracelular para repor o que está sendo consumido pelas células; os rins mantêm constantes as concentrações iônicas e o sistema gastrintestinal fornece nutrientes. Grande parte deste texto está relacionado ao modo como cada órgão ou tecido contribui para a homeostasia. Para iniciar esta discussão, serão descritos, resumidamente, os diferentes sistemas funcionais do corpo e seus mecanismos homeostáticos; em seguida, será apresentada a teoria básica dos sistemas de controle que atuam harmoniosamente entre si.

OS SISTEMAS DE TRANSPORTE DO LÍQUIDO EXTRACELULAR - O SISTEMA CIRCULATÓRIO

O líquido extracelular é transportado para todas as partes do corpo em duas etapas distintas. A primeira depende do movimento do sangue ao longo do sistema circulatório, e a segunda, do movimento de líquido entre os capilares sanguíneos e as células. A Fig. 1.1 mostra a circulação geral do sangue. Todo o sangue contido na circulação percorre todo o circuito em cerca de um minuto em média, no repouso, e até seis vezes por minuto quando a pessoa está extremamente ativa.

Conforme o sangue circula pelos capilares, ocorre troca contínua de líquido extracelular entre a parte de plasma do sangue e o líquido intersticial que preenche os espaços entre as células: os espaços intercelulares. Esse processo é mostrado na Fig. 1.2. Note que os capilares são porosos, de modo que grandes quantidades de líquido e de seus constituintes em solução podem difundir, nos dois sentidos, entre o sangue e os espaços teciduais, como indicado pelas setas na figura. Esse processo de difusão é causado pela movimentação cinética das moléculas, tanto no plasma como no líquido intersticial. Isto é, o liquido e as moléculas em solução estão continuamente em movimento e saltando em todas as direções no interior do próprio líquido e também através dos poros e pelos espaços teciduais. Quase que nenhuma célula fica distante mais de 25 a 50 􀈝m de um capilar, o que assegura a difusão de quase todas as substâncias do capilar para a célula dentro de poucos segundos.

Assim, o líquido extracelular, por todo o corpo, tanto o do plasma como o do líquido contido nos espaços intercelulares, está sendo continuamente misturado, o que garante sua homogeneidade quase total.

ORIGEM DOS NUTRIENTES DO LÍQUIDO EXTRACELULAR

Sistema respiratório. A Fig. 1.1 mostra que, cada vez que o sangue circula pelo corpo, ele também flui pelos pulmões.
Nos alvéolos, o sangue capta oxigênio, ganhando, dessa forma, o oxigênio necessitado pelas células. A membrana entre os alvéolos e o lúmen dos capilares pulmonares tem espessura de apenas 0,4 a 2,0 􀈝m e o oxigênio se difunde, através dessa membrana, para o sangue exatamente da mesma maneira como a água e os íons se difundem através dos capilares teciduais.

Tubo gastrintestinal. Grande parte do sangue que é bombeada pelo coração também passa pelas paredes dos órgãos gastrintestinais. Aí, diversos nutrientes dissolvidos, incluindo carboidratos, ácidos graxos, aminoácidos e outros, são absorvidos para O líquido extracelular. Fígado e outros órgãos que desempenham funções primariamente metabólicas. Nem todas as substâncias absorvidas do tubo gastrintestinal podem ser usadas, na forma em que foram absorvidas, pelas células. O fígado modifica as composições químicas dessas substâncias, transformando-as em formas mais utilizáveis, e outros tecidos do corpo — as células adiposas, a mucosa gastrintestinal, os rins e as glândulas endócrinas — ajudam a modificar as substâncias absorvidas ou as armazenam, até que sejam
necessárias no futuro.

Sistema musculoesquelético. Algumas vezes, é levantada a questão: como é que o sistema musculoesquelético participa nas funções homeostáticas do corpo? A resposta a ela é óbvia e simples. Se não fosse por esse sistema, o corpo não se poderia deslocar para um local apropriado no tempo adequado, a fim de obter os alimentos necessários para sua nutrição. O sistema musculoesquelético também gera a motilidade usada na proteção contra os ambientes adversos, sem o que todo o corpo, junto com os demais mecanismos homeostáticos, poderia ser destruído instantaneamente.

REMOÇÃO DOS PRODUTOS FINAIS DO METABOLISMO

Remoção do dióxido de carbono pelos pulmões. Ao mesmo tempo que o sangue capta oxigênio nos pulmões, o dióxido de carbono está sendo liberado do sangue para os alvéolos, e o movimento respiratório do ar, para dentro e para fora dos alvéolos, transporta esse gás para a atmosfera. O dióxido decarbono é o mais abundante de todos os produtos finais do metabolismo.

Os rins. A passagem de sangue pelos rins remove a maioria das substâncias que não são necessárias às células. De forma especial, essas substâncias incluem os diferentes produtos finais do metabolismo celular, além do excesso de íons e de água que podem ter-se acumulado no líquido extracelular. Os rins realizam sua função, primeiro, ao filtrarem grandes quantidades de plasma, pelos glomérulos, para os túbulos e, em seguida, reabsorverem para o sangue as substâncias que o corponecessita — como glicose, aminoácidos, quantidades apropriadas de água e muitos íons. Contudo, a maior parte das substâncias que não são necessárias ao corpo, especialmente os produtos finais do metabolismo, como a uréia, é pouco reabsorvida e, como resultado, elas passam pelos túbulos renais para serem eliminadas na urina.

REGULAÇÃO DAS FUNÇÕES CORPORAIS

O sistema nervoso. O sistema nervoso é formado por três constituintes principais: o componente sensorial, o sistema nervoso central (ou componente integrativo) e o componente motor. Os receptores sensoriais detectam o estado do corpo ou o estado de seu ambiente. Por exemplo, os receptores, presentes por toda a pele, denotam cada e todas as vezes que um objeto toca a pessoa em qualquer ponto. Os olhos são órgãos sensoriais que dá à pessoa uma imagem visual da área que a cerca. O sistema nervoso central é formado pelo encéfalo e pela medula espinhal. O encéfalo pode armazenar informações, gerar pensamentos, criar ambições e determinar quais as reações que serão executadas pelo corpo em resposta às sensações. Os sinais apropriados são, em seguida, transmitidos, por meio do componente motor do sistema nervoso, para a efetivação dosdesejos da pessoa.

Um grande componente do sistema nervoso é chamado de sistema autonômico. Ele atua ao nível subconsciente e controla muitas funções dos órgãos internos, inclusive o funcionamento do coração, os movimentos do tubo gastrintestinal e a secreção de diversas glândulas.
O sistema de regulação endócrina. Existem dispersas no corpo oito glândulas endócrinas principais, secretoras de substâncias químicas, os harmônios. Os hormônios são transportados pelo líquido extracelular até todas as partes do corpo, onde vão participar da regulação do funcionamento celular. Por exemplo, os hormônios tireóideos aumentam a velocidade da maioria das reações químicas celulares. Dessa forma, o hormônio tiróideo deter mina a intensidade da atividade corporal.

A insulina controla o metabolismo da glicose, os hormônios do córtex supra-renal controlam o metabolismo iônico e protéico, e o hormônio paratiróideo controla o metabolismo ósseo. Assim, os hormônios formam um sistema de regulação que complementa o sistema nervoso. O sistema nervoso, em termos gerais, regula, principalmente, as atividades motoras e secretoras do corpo, enquanto o sistema hormonal regula, de modo primário, as funções metabólicas.


REPRODUÇÃO

Por vezes, a reprodução não é considerada como uma função homeostática. Todavia, a reprodução participa da manutenção das condições estáticas, por produzir novos indivíduos que vão tomar o lugar dos que morreram. Isso talvez pareça um uso permissivo do termo homeostasia, mas, na verdade, ilustra que, em última instância, todas as estruturas do corpo, em essência, são organizadas de forma a manter a automaticidade e a continuidade da vida.

OS SISTEMAS DE CONTROLE DO CORPO

O corpo humano contém literalmente milhares de sistemas de controle. Os mais intricados deles são os sistemas genéticos de controle, atuantes em todas as células, para regular o funcionamento intracelular e, também, todas as funções extracelulares. Este tópico é discutido no Cap. 3. Muitos outros sistemas de controle atuam ao nível dos órgãos, para regular o funcionamento de partes distintas desses órgãos; outros atuam ao nível de todo o corpo, para regular as inter-relações entre os órgãos. Por exemplo, o sistema respiratório, atuando em associação com o sistema nervoso, regula a concentração de dióxido de carbono no líquido extracelular. O fígado e o pâncreas regulam a concentração de glicose no líquido extracelular. Os rins regulam a concentração dos íons hidrogênio, sódio, potássio, fosfato e muitos outros no líquido extracelular.

EXEMPLOS DE MECANISMOS DE CONTROLE

Regulação das concentrações de oxigênio e de dióxido de carbono no líquido extracelular. Dado que o oxigênio é uma das principais substâncias necessárias para as reações químicas no interior das células, é muito importante que o corpo disponha de mecanismo especial de controle para manter uma concentração de oxigênio constante e quase invariável no líquido extra - celular. Esse mecanismo depende, principalmente, das características químicas da hemoglobina, presente em todos os glóbulos vermelhos do sangue. A hemoglobina se combina com o oxigênio enquanto o sangue circula pelos pulmões. Em seguida, conforme o sangue passa pelos capilares teciduais, a hemoglobina não libera o oxigênio no líquido tecidual, caso ele já contenha teor elevado de oxigênio, mas, se a concentração de oxigênio estiver baixa, será liberado oxigênio em quantidade suficiente para restabelecer a concentração tecidual adequada de oxigênio. Dessa forma, a regulação da concentração de oxigênio nos tecidos depende, primariamente, das características químicas da própria hemoglobina. Essa regulação recebe o nome de função tamponadora de oxigênio da hemoglobina.

A concentração de dióxido de carbono no líquido extracelular é regulada de forma bastante diferente. O dióxido de carbono é um dos principais produtos finais das reações oxidativas das células. Se todo o dióxido de carbono formado nas células pudesse se acumular nos líquidos teciduais, a ação de massa do próprio dióxido de carbono interromperia, em pouco tempo, todas as reações liberadoras de energia das células. Felizmente, um mecanismo nervoso controla a expiração do dióxido de carbono pelos pulmões e, dessa forma, mantém concentração constante e relativamente baixa de dióxido de carbono no líquido extracelular. Em outras palavras, a concentração elevada de dióxido de carbono excita o centro respiratório, fazendo com que a pessoa respire mais freqüentemente e com maior amplitude.
Isso aumenta a expiração de dióxido de carbono e, por conseguinte, acelera sua remoção do sangue e do líquido extracelular, e esse processo continua até que sua concentração retorne ao normal. Regulação da pressão arterial. Vários sistemas distintos contribuem para a regulação da pressão arterial. Um deles, o sistema barorreceptor, é exemplo excelente e muito simples de um mecanismo de controle. Na parede da maioria das grandes artérias da parte superior do corpo - e, de modo especial, na bifurcação da artéria carótida comum e no arco aórtico - existem numerosos receptores neurais que são estimulados pelo estiramento da parede arterial. Quando a pressão arterial se eleva, esses barorreceptores são estimulados de forma excessiva, quando, então, são transmitidos impulsos para o bulbo, no encéfalo. Aí, esses impulsos inibem o centro vasomotor, o que, por sua vez, reduz o número de impulsos transmitidos, pelo sistema nervoso simpático, para o coração e para os vasos. Essa diminuição dos impulsos provoca menor atividade de bombeamento pelo coração e maior facilidade para o fluxo de sangue pelos vasos periféricos; esses dois efeitos provocam o abaixamento da pressão arterial até seu valor normal. De modo inverso, queda da pressão arterial relaxa os receptores de estiramento, permitindo que o centro vasomotor fique mais ativo que o usual, o que provoca a elevação da pressão arterial ate seu valor normal.

Faixas normais de variação dos constituintes importantes do liquido extracelular
O Quadro 1,1 enumera os constituintes mais importantes - junto com suas características físicas - do líquido extracelular, alem de seus valores normais, faixas normais de variação e limites máximos que podem ser mantidos, sem morte, por curtos períodos. Deve ser notado, de forma especial, como é estreita a faixa normal de variação para cada um desses constituintes.

Valores fora dessa faixa são, em geral, causa ou resultado de doença. Ainda mais importantes são os limites que, quando ultrapassados, podem levar à morte. Por exemplo, aumento da temperatura corporal de apenas 6 a 7°C acima da normal pode, muitas vezes, gerar um ciclo vicioso de aumento do metabolismo celular que, literalmente, destrói as células. Também deve ser notada a faixa muito estreita para o equilíbrio ácido-básico do corpo,com valor normal do pH de 7,4 e valores letais 0,5 abaixo e acima desse valor normal. Outro fator especialmente importante é o íon potássio, pois, sempre que sua concentração cai até menos de um terço da normal, a pessoa tende a ficar paralisada, devidoà incapacidade dos nervos de transmitir os sinais nervosos e, caso chegue a aumentar até duas ou mais vezes a normal, é muito possível que o músculo cardíaco fique gravemente deprimido. Por outro lado, quando a concentração do íon cálcio cai abaixo da metade da normal, a pessoa fica suscetível de apresentar contrações tetânicas nos músculos de todo o corpo, devido à geração espontânea de impulsos nervosos nos nervos periféricos. Quando a concentração de glicose fica reduzida a menos da metade da normal, a pessoa, com muita freqüência, apresenta intensa irritabilidade mental e, por vezes, até convulsões.

Assim, a análise desses exemplos deve levar à apreciação extrema da importância e, até mesmo, da necessidade de grande número de sistemas de controle, mantenedores do corpo funcionando no estado de saúde; a ausência ou falta de um desses controles pode resultar em doença grave e até em morte,

Continua... pag5